李晓倩,博士,讲师
电子邮箱:lixiaoqian1@bucea.edu.cn
研究方向:
计算机辅助建筑性能设计;建筑性能预测与优化;机器学习;智能优化
教育经历:
2020年-2025年 天津大学建筑学院,建筑学,博士
2017年-2020年 天津大学建筑学院,建筑学,硕士
2012年-2016年 山东建筑大学土木工程学院,土木工程,学士
2023年-2024年 新加坡国立大学建筑学院,建筑学,联合培养
职业经历:
2025年至今 银河电子游戏1331 讲师
参与的科研课题:
(1)十四五国家重点研发专项《城市高强度片区关键优化技术》(2023年—至今,在研)
(2)十三五国家重点研发专项《目标和效果导向的绿色建筑设计新方法及工具》(2026年—2021年,结题)
(3)国家自然科学基金面上项目《以医院为基础的儿童新发重大传染病的预警与应对》(2022年—至今,在研)
(4)国家自然科学基金海外项目《基于参数化建筑信息模型的建筑节能优化系统研究》(2017年—2018年,结题)
学术兼职:
《Automation in Construction》、《Building and Environment》、《Journal of Building Engineering》期刊审稿人
代表性成果:
[1] Xiaoqian Li, Gang Liu, Ye Yuan, and Zhen Han*. Highly Generalized Surrogate Models for Indoor Glare Performance Based on Multimodal Deep Learning Networks at the Early Design Stage[J]. Building and Environment 273 (2025): 112706.
[2] Xiaoqian Li, Ye Yuan, Gang Liu, Zhen Han* and Rudi Stouffs*. A predictive model for daylight performance based on multimodal generative adversarial networks at the early design stage[J]. Energy and Buildings 305 (2024): 113876.
[3] Xiaoqian Li, Zhen Han, Jiaqi Sun, and Gang Liu*. Venis: A designer-centric support tool for building performance design at early design stages[J]. Journal of Building Engineering 63 (2023): 105429.
[4] Yaqi Wu1, Xiaoqian Li1, Xing Zheng, Chenxi Lei, Ye Yuan, Zhen Han* and Gang Liu*. A rapid indoor 3D wind field prediction model based on Conditional Generative Adversarial Networks[J]. Journal of Building Engineering 100(2025): 111756.
[5] Han Zhen, Gang Liu, Lihua Zhang, Xiaoqian Li* and Ye Yuan*. Developing a Dual Modal Surrogate Model Training Framework for Building Performance Prediction in Early Design Stage[J]. Energy and Buildings 329(2025): 115307.
[6] Han Zhen, Xiaoqian Li, Jiaqi Sun, Mo Wang and Gang Liu*. An interactive multicriteria decision-making method for building performance design[J]. Energy and Buildings 282(2023): 112793.
[7] 刘刚, 李晓倩, 韩臻.基于样本集质量的建筑能耗预测机器学习算法选择及参数设 置[J].重庆大学学报,2022,45(05):79-95.
[8] Xiaoqian Li, Zhen Han, Gang Liu and Rudi Stouffs. A rapid prediction model for view-based glare performance with multimodal Generative Adversarial Networks[100]. CAADRIA 2024. 2024, Singapore, Singapore.
[9] Xiaoqian Li, Zhen Han and Gang Liu. A multimodal Generative Adversarial Nets model for the prediction of matrix-based building performance[100]. The 18th IBPSA International Conference and Exhibition, Building Simulation 2023. 2023, Shanghai, China.
[10] Zhen Han, Xiaoqian Li, Wei Yan and Gang Liu. A Deep Reinforcement Learningbased Autonomous Façade Control System for Smart Indoor Lighting[100]. Healthy, Efficient and Intelligent Buildings 2021. 2021, Paris, France.
[11] Dan Hou, Wei Yan, Gang Liu and Xiaoqian Li. A Multi-Stage Framework for Building Energy Optimization: Key Factors and Prototypes [100]. The 16th IBPSA International Conference and Exhibition, Building Simulation 2019. 2019, Rome, Italy.
[12] 刘刚, 李晓倩, 韩臻, 康钰卓, 一种基于粒子群算法的维度自适应灯具布置方法, CN115906352B
[13] 刘刚, 韩臻, 李伟锋, 刘薇, 李晓倩, 原野, 被服务人员动态人数监控预警与资源调配方法, CN 117689073 B